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Abstract. A simple formula is obtained by which any symmetrized power of D ( j )  may be 
expressed in terms of the symmetrized powers of D(j-3) .  This formula does not depend 
explicitly on the representation theory of the symmetric group and it gives a method of 
building up any symmetrized power in fully reduced form. In particular, recurrence for- 
mulae are obtained for the totally symmetrized and totally antisymmetrized powers of 
D(j ) ,  and a formula is given for arbitrary symmetrized powers of D(1). Finally it is proved 
that D(j)” contains D ( j -  l)”, n 2 2, as a proper subrepresentation and formulae are ob- 
tained for the symmetrized cubes of D( j). 

1. Introduction 

The main result of this paper is a formula by which any symmetrized power of the 
irreducible representation D(j) ,  of dimension (2j+ l), of SU(2) may be expressed in 
terms of the symmetrized powers of D(j-$)  (see theorem (3.3)). This recurrence formula 
leads to a step-up procedure for obtaining any given symmetrized power in completely 
reduced form. The beauty of this result is that it does not depend explicitly on the 
representation theory of the symmetric group S ,  and it is very simple to apply. In 6 5 
an explicit formula is given for the symmetrized powers of D(1), which appears to be 
new. 

The problem of finding the symmetrized powers of D ( j )  arose when methods were 
being considered for symmetrizing the representations of point groups (Backhouse and 
Gard 1974). Let P be a double point group, then in certain cases D ( j )  J. P is still an 
irreducible representation of P, and so the task of symmetrizing such representations 
is solved if we can symmetrize the representations D ( j )  themselves. However, the 
present paper has further direct applications, for example to the theory of term analysis 
in atomic physics as expounded by Lomont (1959), Smith and Wyborne (1967, 1968) 
and Wyborne (1969, 1970). For in one approach to the problem of forming correctly 
antisymmetrized n-particle wavefunctions, the space and spin single-particle states are 
symmetrized independently according to certain related representations of S, and then 
combined, taking into account the Pauli principle. We might add that this work can 
also be considered as a contribution to the theory of plethysms, a concept which has 
found mounting application in recent years to atomic and nuclear theory. The problem 
of symmetrizing representations of the rotation group has also been considered by 
Murnaghan (1972). 
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In 0 2 we introduce our notation and in 0 3 we develop the general method for 
symmetrizing the representations which leads to the main result, theorem (3.3). In 9 4, 
two recurrence relations are obtained for the totally symmetrized nth power of D ( j )  
and also for the totally antisymmetrized nth power of D(j) .  In one case the j value is 
stepped down and in the other case the n value. In 0 5 formulae are obtained for the 
symmetrized powers of D()) and D(1). In 0 6 we prove the result that D ( j -  1)” is con- 
tained in D( j)”, n 2 2, and obtain a step-up formula for D( j)”. We also obtain a complete 
set of formulae for the reduction of the symmetrized cubes of D ( j )  and a recurrence 
relation for D(j)4. 

2. Definitions 

It is well known that SU(2) is a 2-1 covering group of the rotation group SO(3) and so 
we denote the representations of SU(2) by D ( j ) ,  j = 4, l,$,. . . . Integer values of j lead 
to ordinary representations of SO(3) and half-integer values of j lead to projective 
representations of SO(3). The inner Kronecker product of two representations of 
SU(2) has the simple reduced form 

h + j z  

j = l A  - j21  

D ( j 1 ) D ( j 2 )  = 0 D(j) .  (2.1) 

Now consider the nth inner Kronecker power of D(j) ,  which we denote by D(j)”. 
The symmetric group S, acts on the carrier space of this representation by permuting 
the basis elements of the D(j)’s. This action commutes with the action of SU(2) and 
hence the carrier space splits into a direct sum of SU(2) x S, invariant subspaces R’, 
where [v] is a unitary irreducible representation of S, corresponding to the partition 
(v) = (v I ,v2 , .  . . ,vd), v1 2 v 2  2 . . . 2 vd > 0 of the positive integer n. Note that R’ 
will be empty if the number of rows d of the Young’s diagram (YD) is greater than (2j+ 1). 
It can be shown that R’ carries a given representation, which is denoted by D ( j )  0 (v), 
d ,  times, where d ,  = dim[v]. Hence there is a direct sum decomposition 

summed over all the representations [VI of S,. The representation D(j)@(v)  is called 
the symmetrized power of D ( j )  corresponding to the partition (v) of n. More details of 
this decomposition for the general linear group may be found in Boerner (1970). The 
above result is obtained by regarding each matrix representation of SU(2) as a subgroup 
of the general linear group. 

3. General formula for 00’) ‘8 (v)  

The method we propose to use is a generalization of the standard method of deriving 
results like (2.1). Let x ( j )  denote the character of D(j) ,  then for a rotation through an 
angle 8, x( j )  takes the value 
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But symmetrizing the character x( j )  of SU(2) is equivalent to symmetrizing the 
representation 

0 . .  .e e-’je (3.2) R(0) ,+ eije e ei(j - 1 )e 

of SO(2) (the double group of SO(2)). Having carried through the symmetrization, we 
revert to the idea of characters and choosing the highest positive index j appearing, 
proceed to strip off terms like (3.1). Clearly if (3.1) does appear in this decomposition 
then D ( j )  lies in the corresponding symmetrized power. In order to symmetrize the 
representation (3.2) of S0(2), we need the following theorem and its corollary which 
are easily deducible from the Weyl formula (Weyl 1950, p 331) or as a generalization 
of result I11 of Littlewood (1950, p 290). 

Theorem (3.1). Let L ,  , L 2 ,  . . . , L, be representations of the same group G. Let (v) be a 
partition of n and let (v,) ,  (v,), . . . , (v,) be partitions of n , ,  n,, . . . , n, respectively, where 
n = n ,  +n,+ . . . +n,. Then 

( L ,  0 L2 0 ... 0 L r )  0 (v) 

@ ~ ( v ;  V I  9 ~ 2 ,  * 9 v r ) [ L 1  0 ( ~ 1 1 3 . .  . [ L r  O ( v r ) I  
nlm, . . . ,n ,  
V l . V 2 , . . . I v r  

where the direct sum is taken over all partitions of n as n = n ,  + n, + . . . + n, and for 
each such partition o(v; v l ,  v , ,  . . . , v,)  is the frequency of the representation [ v , ]  x [v,] 
x . . . x [vr] in [v] 1 S , ,  x S,,  x . . . x S,,.. 

Denote the linear characters of SO(2) by $ p  so that 

$,(e) = eipe (3.3) 

( p  is integer or half-integer). Clearly ($,,)” = t+hnp. We have the following result. 

Corollary (3.2). 

( $ j  0 $ j - ,  0 . . .  0 $ - j )  0 (v) 

= @ o ( v ; n , , n , , .  . . ,n2j+,)($j)”1($j-,)”2.. . ( t , k j ) ” 2 ~ + l  (3.4) 
where the summation is over all partitions of n as n = n ,  + n, + . . . + n,j+ , . 

This follows immediately from theorem (2.1) since if $ is a linear character 

$” = $ 0 (4. (3.5) 
To analyse these results still further we need the theory of outer direct products of 

symmetric group representations. See for example Robinson (1961) or Hamermesh 
(1964). The outer direct product, denoted by 0, is defined by 

(3.6) [VI]  0 [v,] 0 . . . 0 [vr] = ([VI] x [v2] x . . . x [vr]) T S ,  
where we have used the notation of theorem (2.1) and t denotes induction. By the 
Frobenius reciprocity theorem 

[VI] 0 [VJ 0.. . 0 [v,] = @ o(v; v , ,  v , , .  . . ,  v,)[v]. (3.7) 

It can be shown that the representation [n,] 0 [n,] 0 . . . 0 [n2 j+  ,] decomposes into 
representations of S ,  corresponding to YD with at most (2j+ 1) rows. Hence 

V 
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a ( v ;  n, , n 2 , .  . . , nzj+ is identically zero if [v] corresponds to a YD with more than 
(2j+ 1) rows and consequently D ( j )  @ (v) is empty. Also, D ( j )  @ (1”) will vanish unless 
each ni takes the value one or zero, so that D ( j )  0 (1”) is empty if n > 2j+  1. Yet another 
standard result is the following 

(3.8) 

summed over all partitions of n as n = n, + n 2  + . . . +nZj+ This holds because the 
frequency of [n] in [nl] 0 [n2] 0 . . . 0 [nZj+J is one for all partitions. 

In order to find a step-up procedure for symmetrizing representations we apply 
theorem (3.1) to ( L  @ $), where L is an arbitrary representation and $ is a linear 
character : 

(3.9) 

( $ j  8 $ j -  1 o * * o $- j )  @ (n)  @ ($jY1($j- IP . - * ($- jP+ 

(L O $1 @ (v) = 0 p, n2)[L c9 (p)1P2 

where (p)  is a partition of n, = n - n2.  Take (v) = ( v l ,  v 2 , .  . . , v,) where 

V l + V 2 +  . . .  +v, = n and 

Take ( p )  = hl, p 2 , .  . . , ,us) where pl + p z  + . . . + p s  = n, and pl 2 p2 2 . . . 2 ps > 0. 
From the theory of outer direct products, the decomposition of [p] 0 [n2] only contains 
representations [v] of S, corresponding to YD with s or (s+ 1) rows. Hence s = r or 
( r  - 1). In fact it is possible to characterize all representations [CL] which lead to a non- 
zero a ( v  : p, n2). They satisfy 

VI 2 v2 2 ... 2 v, > 0. 

0 < p, < v, 

v, < @,-I < v,-1 

v2 < p1 < v1 

and in all cases a ( v ;  p, n2) = 1. Hence 

(LO $) @ (v) = 0 [L @ (p)]Ip-”’-”””’-”r. 
(c)  in (3.10) 

(3.10) 

(3.11) 

Now we apply this result to symmetrize representations of the form 

( $ j  O $ j -  1 O . . * O $- j )  (3.12) 

by taking $ = $j  and L = $ j - l  e.. . 0 $ - j .  But L can also be written as an inner 
Kronecker product 

(3.13) 

Substituting in (3.11) we obtain 

($j@$,j-I O . * . O $ - j ) O ( v )  

Hence we can express the character ~ ( j )  0 (v) in terms of the characters x(j-+) @ ( p )  
for all @) in the range defined by (3.10). Note that the maximum possible index appearing 
is J = nj - (v2 + v3 + . . . + v,) and this is generally not attained. 
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In the above analysis, the symmetry of the problem has been lost by the choice of 
L and $. We could equally well take $ = $ - and 

L = $ j  8 $ j - I  8 * * a  8 $ - j + I  

(3.16) 

E 0 $ - n j + ( r l + r 2 + . . . + ~ r ) t i + t ) [ ( l ( l j - f  8 $ j - j  8 8 + - j + * )  8 (~11.  
(3.17) 

(3.18) 

If J 2 p ,  this leads to the representation D(J + p )  8 D(J - p )  of SU(2). If J e p ,  this is 
formally D(J + p )  - D( - J + p - 1). Both have the same form if we define 

D(-j) = -D(j-1). (3.19) 

W i n  (3.10) 

Adding (3.15) and (3.17) we obtain a direct sum of terms of the form 

W P  8 $-&$.r 8 $ J -  1 e. * .  @ $ - A .  

Hence we may define the operator T by 

T(p) [D(J)I = D(J + P) 8 D(J -d.  (3.20) 

This action of T may be extended by linearity to arbitrary representations of SU(2). 
Now adding (3.15) and (3.17) and using the definition of T'we obtain the following 
theorem. 

Theorem (3.3). 

2D(j) 8 (v) = 0 T[nj-(p,+p*+ . . .  + p ~ ( j + t ) I [ D ( j - ~ ) 8 ~ ) 1 .  (3.21) 

This appears to be a very useful result since it expresses the representation 
D ( j )  8 ( v )  directly in terms of the representations D ( j - t )  8 (p) belonging to lower 
j values. Hence starting from low values of j, equation (3.21) gives a step-up procedure 
for obtaining any symmetrized representation in reduced form. It is very simple to use 
and is completely independent of the representation theory of S,. 

( ~ ) i n ( 3 . 1 0 )  

4. Recurrence relations for 00') 63 (n) and o ( j )  @ (1") 

If we restrict our attention to the totally symmetrized nth power, D ( j )  8 (n), and the 
totally antisymmetrized nth power, D( j )  8 (l"), we obtain two recurrence relations as 
follows : 

( $ j  O $ j - 1  O * * * 8 $ - j )  8 (n) E 0 ( $ j y l ( $ j - l p . .  . ( $ - j ) " * ~ + ' .  (4.1) 
nl  + n 2 + . . .  + n l J c  1 = n  

Taking n , ,  n l j +  I 2 1 gives 

( $ j  O $ j - 1  8.1. O $ - j )  8 (n-2) 

$ - n / 2 [ ( $ j - *  8 $ j - +  8 * a *  @ $ - j + + )  8 (n)] 

(4.2) 

since $ j$ -  = $o. When n, = 0 we obtain the term 

(4.3) 
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and when n l j +  = 0 we obtain the term 
+ , / 2 [ ( + j - +  O + j - *  0 O + - j + + )  0 (n)l. (4.4) 

We must subtract those representations which have been counted twice, namely those 
corresponding to n,  = n 2 j +  = 0. This term is 

( + j - ,  0 + j - 2  O ...  0 + - j + l )  0 (n). (4.5) 

D ( j )  Q (4 = D ( j )  0 (n - 2)  0 T(n /2 )  [D(j  - 3) 0 (43 - D(j  - 1) 0 (4 (4.6) 

Using the definition of the operator Tgiven by (3.19) we obtain 

where the operator T(n /2 )  acts on each irreducible constituent of D( j - i) 0 (n). 
Equation (4.6) gives a formula for the difference [D(j) 0 (n)] - [ D ( j )  0 (n - 2)] in 

terms of symmetrized powers of lowerj value. This is most useful for representations of 
low dimension and as an example we obtain D(3/2) 0 (n). 

D(3/2) 0 (n) - D(3/2) 8 (n - 2) 
D(n/2) n even 
D(n/2+ 1) n odd 

D( - 4 2 )  n even 
D(1- 4 2 )  n odd 

= D(3n/2) 0 D(3n/2 - 2) 0 . . . 0 

0 D(n/2)  0 D(n/2- 2 )  0 . . . 0 

- D(n/2). 

Hence for all n 3 4 
3 n i 2  - 2 

D(3/2) 0 (n) - D(3/2) 0 (n  - 4) = D(3n/2) 0 0 D ( j ) .  
j = n / 2  

If we define 
D ( j )  8 (0) = D(O)j 
mi) 0 (-n) = 0 

then we can read off the values for n = 2,3 as well. 
There is an alternative recurrence formula for the totally symmetrized nth power 

which is more useful for dealing with low values of n. In equation (4.1) take 
n, = n z j +  , = 0. This gives rise to the term D ( j -  1) 0 (n). Taking successively n ,  > 0 
and nl j+,  > 0 gives rise to T(j)[D(j) Q (n- l)]. We must subtract the representation 
D ( j )  0 (n -  2) corresponding to n, > 0 and nl j+ > 0. Hence 

D ( j )  0 (n ) -D( j -  1) 0 (n) T(j)[D(j) 0 (n- l)]-D(j) 0 (n-2).  (4.9) 

Note that (4.9) and (4.6) may be combined to give an alternative formula. Now we make 
use of (4.9) to obtain expressions for D( j )  0 (2)  and D( j )  0 (3). 

W) 0 W - W -  1) 0 (2 )  = [ W j )  0 D(0)l -D(O). 
2j even 

2j odd 
(4.10) 

Hence 

and 
D ( j )  0 (2) 3 D(2j) 0 D(2j - 2 )  0 . . . @ 
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Hence 

(4.1 1) 

In a similar way we obtain recurrence relations for the totally antisymmetrized 
powers. Starting from the equation 

where o ( l n ; n l , n 2 , ,  . . ,nZj+,)  is zero unless each ni = 0, l  (i = 1 ,2 , .  . . , 2 j + l ) .  Hence 
n < 2j+ 1 for a non-trivial result. Taking n, = n,,+ , - - 1 gives rise to D(j- 1) 0 (1"-'). 
Taking first n, = 0, then n Z j + ,  = 0, gives rise to T(n/2)[D(j-$) 0 (171. We must 
subtract the overlap D(j- 1) 0 (1") corresponding to n, = n Z j +  , = 0. Hence we obtain 
the formula 

Applying this result to 0(3/2) we obtain 

D(3/2) 0 (1 2, = D(2) 0 D(O)} 

D(3/2) 0 (13) = D(3/2) 
(4.14) 

We can obtain another formula for D ( j )  0 (1") as follows. Taking n ,  = n, j+l  = 0 
gives D ( j -  1) 0 (1'). Taking n ,  = 0, n Z j + ,  = 1 and then n ,  = 1, n2j+1 = 0 gives 
T(j)[D(j- 1) 0 (l"-')]. Taking n, = n2j+l  = 1 gives 00'- 1) 0 (1"-2). Hence 

D(j) 0 (1") D(j-1) 0 (1") 0 D ( j -  1) 0 (1"-2) 0 T(j)[D(j- 1) 0 (1"-')]. (4.15) 

Taking n = 2,3 we obtain 

D(j) 0 (l')--D(j- 1) 0 (12) = DGj-1) 

and 

(4.16) 

D(j) 0 (13)-D(j-2) 0 (13) G D(3j-3) 0 D(3j-5) 0 D(3j-6) 0 . . . 0 D(j-1). (4.17) 

For completeness we now list some results which link the totally symmetrized and 
totally antisymmetrized powers (see Murnaghan 1972). Let n, n' be integers, then : 

The first of these is known as Hermite's law of reciprocity and it is illustrated, for 
example, by (4.7) and (4.1 1). All these results can be proved directly from (3.4). 



1800 P Gard and N B Backhouse 

5. Formula for D(1) 8 (v) 

In this section we obtain explicit formulae for D(i )  8 (v) and D(1) &, (v). From (3.4) 

(+* @ +-+) 63 (v1, v2) 
E @ d v  ; n1, n2)++(nl - n 2 )  

n l + n 2 = n  

n l = v 2  

= +*(v2-vl)  e $ * ( v 2 - v , + 2 )  0 . .  * e $f (v1 -v2 ) .  

Hence 

D(+) 0 (v1, VI) = D[&l - V2)l. (5.1) 

This is a well known result, but we have not seen the explicit formula for D(1) 8 (v) 
which we now obtain. From (3.4) 

($1 e $0  8 $- 1) 8 ( v 1 9  v2 9 v3) 

= @ 4 W J 2 ) [ W l  @$- l )@(P) l  

= @ ($1 @ $ - 1 ) @ ( P l , P 2 )  
V 2 6 Q 1 6 V 1  
vg b p 2 B  v2 

where (p )  = ( p 1 , p 2 )  and the summation limits are obtained from (3.10). From the 
previous case and (3.2) we obtain 

( $ l @ $ - l ) @ ( P l 9 P 2 )  3 + h - k 1 2 )  e + ( r l - r 2 - 2 ) e . . . e $ ( - P 1 + P 2 )  (5.2) 

giving alternate values of the index j .  
Consider all the allowed pairs (pl , p2) defined by (3.10) and plot these points on a 

graph. They lie inside a rectangle with sides pl = v l ,  p2 = v2, p1 = v2, p2 = v3. 
From (5.2), adjacent pairs of points in either the pl or p2 directions lead to a represen- 
tation of SU(2), except for points on the diagonal pl = p2 which may lead to D(0). In 
particular we have 

n even 
n odd. D(1) &, (n )  = D(n) D(n - 2) e . . . (5.3) 

For an arbitrary partition (v), we analyse the diagram first by considering the trapezium 
bounded by the lines p, = v2, pl = p 2 ,  pl = v l ,  p2 = v3 and then removing the 
triangle bounded by the sides pl = p 2 ,  pl = v l ,  p2 = v2 + 1. The contribution to the 
representation from each area can be written down using the notation of (5.3) and we 
obtain 

(5.4) 
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(5.4) may be expanded using (5.3). We may also take dots in pairs along the p1 direction 
which leads to the result 

D(1) 8 ( v 1 9  v 2 ,  v3)  

E [ D D O ~ ( V ~ - V , ) ~ D ( ~ ) ~ ( V , - - Y ~ - - ~ )  e... O D ( 1 ) @ ( ~ 1 - ~ 2 ) 1  

- [ ~ ( i ) ~ ( v , - - v ~ - - l )  e ~ ( 1 ) o  ( v , - v 3 - 2 ) e . . .  S D U ) ~ D ( O ) I .  (5.5) 

The formulae (5.4) and (5.5) contain too much information and so it is more practical 
to use the step-up formula 

D(1) 0 ( V I  +2, v 2 ,  v3)  

e 8 , v 2  3 v3) 8 D(v l  - v j  + 2, 

@ D ( v ~ - v ~ +  1)  0 . .  . @ D ( v ~ - v , + ~ )  (5.6) 

D ( 1 ) 8 ( ~ 1 , ~ 2 , V 3 )  E D ( 1 ) 8 ( ~ 1 - V 3 , ~ 2 - ~ 3 )  (5.7) 

D(1) 8 (v2, v2) 
~ ( 1 )  8 (v2 + 1, v , )  D(V,  + 1 )  e D(v,)  o . . . e ~ ( 1 )  

in conjunction with the results 

and 

(5.8) 

The result (5.7) is to be found in Hamermesh (1964, p 391) and (5.8) follows from (5.4). 

1. D(1) 8 (v2) 

6. Analysis of Kronecker powers 

The main purpose of this section is to prove the result that D(j)” contains D(j- 1)” as a 
proper subrepresentation and also to suggest an alternative approach to symmetrized 
powers. As in 9 3 we consider the character of D(j)” to be associated with the 
represen tation 

(6.1) 

of SO(2). The terms in the decomposition of this representation are in one-to-one 
correspondence with the n-tuples (j,, j,, . . . , j,) where j, = -j, -j+ 1 , .  . . , j and 
r = 1,2,. . . ,n .  Each n-tuple (jl ,j2, .  . . , in) is associated with the representation 
$jl + j ,  + ,.,, + of SO(2). Hence we have an n-dimensional - simple-cubic lattice structure, 
each point of which corresponds to a representation of SO(2). We obtain the represen- 
tation of SU(2) by systematically removing points corresponding to 

( + j @  + j - 1  @ a * *  0 +-jY 

( + J  e J I J - 1  e.. . e $ - A  
where J is the largest index appearing, and recording the value of J. 

Theorem ( 6.1). If n is any positive integer, n > 2, then D(j)”-D(j- 1)” is a proper 
representation of SU(2). 

Proof. For n > 4 we may proceed by induction : 

D(j)n-D(j- 1)” = D(j)2[D(j)”-2-D(j- 1)”-,] @ [D(j)’-D(j- l),]D(j- l)n-,. (6.2) 
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Hence the result will be true for all n if we can prove it true for n = 2,3. From (2.1) 
2 j  

m = O  
D(j)' = @ D(m). 

D ( j ) ,  - D ( j -  
so 

= D(2j) 0 D(2j- 1) 

(6.3) 

(6.4) 

as required. 
To find D(j), we return to the idea of a simple-cubic lattice. Each triplet ( j , ,  j , ,  j,) 

corresponds to a representation tjj1 + j ,  + j ,  of SO(2). The representation D ( j ) 3  - D ( j  - l), 
may be associated with the triplets on the surface of the cube, ie those with at least one 
entry j or - j .  The surface of the cube has six faces and we take adjacent faces in pairs 
so that each pair contains both the point ( j ,  j , j )  and (-j, - j ,  - j ) .  The contribution to 
the representation of SU(2) is obtained by connecting adjacent points - J ,  - J + 1, . . . , J 
systematically in L-shaped patterns. The contribution from each pair of faces is 

D(3j) 0 D(3j- 1) 0 . . . 0 D ( j ) .  (6.5) 

2D(3j) 0 D(3j- 1). (6.6) 

The overlap between the sides of the faces gives 

Hence 
D ( j ) 3 - D ( j -  l), E D(3j) 0 2D(3j- 1) 0 3[D(3j-2) 0 . .  . 0 D ( j ) ]  (6.7) 

and the theorem follows by induction. 

Note that by combining equations (6.7), (4.11) and (4.17) we obtain the formula 

D(j) 0 (2,1)-D(j-2) 0 (2 , l )  

D(3j-l)OD(3j-2)@D(3j-3) 

0 2[D(3j-4) 0 . .  . 0 D ( j ) ]  0 D ( j -  1). (6.8) 

In the light of theorem (6.1) there are now two methods of analysing D( j)4 - D( j - l)4. 
Either use (6.2) or else work out the contribution from the surface of the hypercube of 
lattice points in four-dimensional space. The following result is obtained : 

D( jl4 - D( j - 
3 D(4j) 0 3D(4j- 1) 0 6D(4j-2) @ lOD(4j- 3) 0 14D(4j-4) 

0 . .  . 0 (8j-2)D(2j) 0 (8j-2)D(2j- 1) 0 (8j-6)D(2j-2) 

0 . .  . 0 lOD(2) 0 6D(1) 0 2D(O). (6.9) 

This obviously gives a quick method of building up powers and it can also be used 
to find symmetrized powers if we can identify the correct parts of the hypercube. For 
instance, from (3.8), D ( j )  0 (n) can be identified with n-tuples ( j ,  , j , ,  . . . , j,) satisfying 
j ,  2 j ,  2 . . . 2 j,. Also D(j) 0 ( I " )  can be identified with n-tuples satisfying 

j ,  < j, < . . . < j,. 

These relations can be used to obtain an alternative proof of (4.9) and (4.15). Hence if 
we could find conditions on the n-tuples corresponding to D(j) 0 (v), restricting them 
to a given subset of the hypercube, this would give an alternative method of obtaining 
the required decomposition. 
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We can also obtain a formula, analogous to (3.21), for D(j)". From (6.1) it follows 
that 

(6.10) 

where the last term is T(0) or T(3) corresponding t o j  being integer or half-integer. This 
is equivalent to the result obtained by Murnaghan (1972). 
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